the cedar ledge

# Arithmetic Sums & Series

Date: January 4 2021

Summary: A brief overview on what arithmetic series are and some of its underlying math.

Keywords: ##zettel #arithmetic #sums #series #proof #archive

# Bibliography

Not Available

An arithmetic sequence is one which the difference between one term and the next only differs by a constant. One example is this:

$1+2+3+\cdots+n$

where the difference between each proceeding term is the constant value, 1.

An arithmetic series is one in which values in an arithmetic sequence are summed together:

$\sum_{k=1}^{n} k=1+2+\cdots+n$

This is a visual proof of the Arithmetic Series algorithm: A formalization of the above is:

$\sum_{k=1}^{n} = \frac{n(a_{1} + a_{n})}{2}$

which is equivalent to:

$\sum_{k=1}^{n} = \frac{a_{n}(a_{1} + a_{n})}{2}$

The latter formalization is somewhat more common and it works as $a_{n}$ gives the same values as what the size of the sequence is which is $n$. From the visual proof, the $\frac{n}{2}$ constant comes from halving the size of each region.

(Thanks to Mark Kittisopikul, Yingbo Ma, and Benoit Pasquier for these explanations)

## How To Cite

Zelko, Jacob. Arithmetic Sums & Series. https://jacobzelko.com/01052021044121-arithmetic-series. January 4 2021.

## Discussion:

CC BY-SA 4.0 Jacob Zelko. Last modified: July 16, 2023. Website built with Franklin.jl and the Julia programming language.