the cedar ledge

Stereographic Projection

Date: November 12 2020

Summary: A small note on the stereographic projection method

Keywords: ##zettel #stereographic #projection #linearalgebra #math #archive

Bibliography

Not Available

Table of Contents

    1. Note Linked From:
  1. How To Cite
  2. References
  3. Discussion:

Note Linked From:


Stereographic projection is used to project a sphere to a 2D plane. The algorithm in Cartesian coordinates looks like this:

[1] (X,Y)=(x1−z,y1−z) [1] \ (X, Y) = (\frac{x}{1 - z}, \frac{y}{1 - z}) [2] (X,Y,Z)=(2X1+X2+Y2,2Y1+X2+Y2,−1+X2+Y21+X2+Y2) [2] \ (X, Y, Z)=\left(\frac{2 X}{1+X^{2}+Y^{2}}, \frac{2 Y}{1+X^{2}+Y^{2}}, \frac{-1+X^{2}+Y^{2}}{1+X^{2}+Y^{2}}\right)

How To Cite

Zelko, Jacob. Stereographic Projection. https://jacobzelko.com/11132020052431-stereographic-projection. November 12 2020.

References

Discussion:

CC BY-SA 4.0 Jacob Zelko. Last modified: May 19, 2024. Website built with Franklin.jl and the Julia programming language.